Rust для машинного обучения - библиотека: различия между версиями

Материал из support.qbpro.ru
 
(не показаны 44 промежуточные версии этого же участника)
Строка 20: Строка 20:
* '''Jupyter Notebook'''
* '''Jupyter Notebook'''


* '''evcxr''' может обрабатывать как '''Jupyter Kernel''' или '''REPL'''. Эти библиотеки нужны для обучения алгоритмов и проверки гипотез машинного обучения.
* '''evcxr''' может обрабатывать как '''Jupyter Kernel''' или '''REPL'''.<br>
Эти библиотеки нужны для обучения алгоритмов и проверки гипотез машинного обучения.


* [https://github.com/google/evcxr google/evcxr - оценки моделей для Rust.]
* [https://github.com/google/evcxr google/evcxr - оценки моделей для Rust.]
Строка 108: Строка 109:
* [https://github.com/yamafaktory/hypergraph yamafaktory/hypergraph Hypergraph is a data structure library to generate directed hypergraphs]<br>
* [https://github.com/yamafaktory/hypergraph yamafaktory/hypergraph Hypergraph is a data structure library to generate directed hypergraphs]<br>


==AUTOML==
==AutoML==
* [https://github.com/tangramxyz/tangram tangramxyz/tangram - Tangram is an all-in-one automated machine learning framework.]<br>
* [https://github.com/tangramxyz/tangram tangramxyz/tangram - Tangram is an all-in-one automated machine learning framework.]<br>
* [https://github.com/datafuselabs/datafuse datafuselabs/datafuse - A Modern Real-Time Data Processing & Analytics DBMS with Cloud-Native Architecture (Rust)]<br>
* [https://github.com/datafuselabs/datafuse datafuselabs/datafuse - A Modern Real-Time Data Processing & Analytics DBMS with Cloud-Native Architecture (Rust)]<br>
Строка 181: Строка 182:
* '''Tensorflow''' и '''PyTorch''' являются наиболее распространенными библиотеками для построения нейронных сетей.
* '''Tensorflow''' и '''PyTorch''' являются наиболее распространенными библиотеками для построения нейронных сетей.


* [https://github.com/tensorflow/rusttensorflow/rust - Rust language bindings for TensorFlow]<br>
* [https://github.com/tensorflow/rusttensorflow/rust Rust language bindings for TensorFlow]<br>
* [https://github.com/LaurentMazare/tch-rs LaurentMazare/tch-rs - Rust bindings for the C++ api of PyTorch.]<br>
* [https://github.com/LaurentMazare/tch-rs LaurentMazare/tch-rs - Rust bindings for the C++ api of PyTorch.]<br>
* [https://github.com/vasanthakumarv/einops VasanthakumarV/einops - Simplistic API for deep learning tensor operations]<br>
* [https://github.com/vasanthakumarv/einops VasanthakumarV/einops - Simplistic API for deep learning tensor operations]<br>
* [https://github.com/spearow/juice spearow/juice - The Hacker's Machine Learning Engine
* [https://github.com/spearow/juice spearow/juice - The Hacker's Machine Learning Engine]<br>
neuronika/neuronika - Tensors and dynamic neural networks in pure Rust.]<br>
* [https://github.com/neuronika/neuronika neuronika/neuronika - Tensors and dynamic neural networks in pure Rust.]<br>
* [https://github.com/neuronika/neuronika bilal2vec/L2 - l2 is a fast, Pytorch-style Tensor+Autograd library written in Rust]<br>
* [https://github.com/neuronika/neuronika bilal2vec/L2 - l2 is a fast, Pytorch-style Tensor+Autograd library written in Rust]<br>
* [https://github.com/raskr/rust-autograd raskr/rust-autograd - Tensors and differentiable operations (like TensorFlow) in Rust]<br>
* [https://github.com/raskr/rust-autograd raskr/rust-autograd - Tensors and differentiable operations (like TensorFlow) in Rust]<br>
Строка 195: Строка 196:
* [https://github.com/jramapuram/hal jramapuram/hal - Rust based Cross-GPU Machine Learning]<br>
* [https://github.com/jramapuram/hal jramapuram/hal - Rust based Cross-GPU Machine Learning]<br>
* [https://github.com/primitiv/primitiv-rust primitiv/primitiv-rust - Rust binding of primitiv]<br>
* [https://github.com/primitiv/primitiv-rust primitiv/primitiv-rust - Rust binding of primitiv]<br>
* [https://github.com/chantera/dynet-rschantera/dynet-rs - The Rust Language Bindings for DyNet]<br>
* [https://github.com/chantera/dynet-rschantera/dynet-rs The Rust Language Bindings for DyNet]<br>
* [https://github.com/millardjn/alumina millardjn/alumina - A deep learning library for rust]<br>
* [https://github.com/millardjn/alumina millardjn/alumina - A deep learning library for rust]<br>
* [https://github.com/jramapuram/hal jramapuram/hal - Rust based Cross-GPU Machine Learning]<br>
* [https://github.com/jramapuram/hal jramapuram/hal - Rust based Cross-GPU Machine Learning]<br>
Строка 209: Строка 210:
* [https://github.com/millardjn/rusty_sr millardjn/rusty_sr - Deep learning superresolution in pure rust]<br>
* [https://github.com/millardjn/rusty_sr millardjn/rusty_sr - Deep learning superresolution in pure rust]<br>


==Графовые модели==
==ГРАФОВЫЕ МОДЕЛИ==
Synerise/cleora - Cleora AI is a general-purpose model for efficient, scalable learning of stable and inductive entity embeddings for heterogeneous relational data.
* [https://github.com/Synerise/cleora Synerise/cleora Cleora AI is a general-purpose model for efficient, scalable learning of stable and inductive entity embeddings for heterogeneous relational data.]<br>
Pardoxa/net_ensembles - Rust library for random graph ensembles
* [https://github.com/Pardoxa/net_ensemblesPardoxa/net_ensembles Rust library for random graph ensembles]<br>


==НЛП==
==НЕЙРОЛИНГВИСТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ==
huggingface/tokenizers - The core of tokenizers, written in Rust. Provides an implementation of today's most used tokenizers, with a focus on performance and versatility.
* [https://github.com/huggingface/tokenizers/tree/master/tokenizers huggingface/tokenizers - The core of tokenizers, written in Rust. Provides an implementation of today's most used tokenizers, with a focus on performance and versatility.]<br>
guillaume-be/rust-tokenizers - Rust-tokenizer offers high-performance tokenizers for modern language models, including WordPiece, Byte-Pair Encoding (BPE) and Unigram (SentencePiece) models
* [https://github.com/guillaume-be/rust-tokenizers guillaume-be/rust-tokenizers - Rust-tokenizer offers high-performance tokenizers for modern language models, including WordPiece, Byte-Pair Encoding (BPE) and Unigram (SentencePiece) models]<br>
guillaume-be/rust-bert - Rust native ready-to-use NLP pipelines and transformer-based models (BERT, DistilBERT, GPT2,...)
* [https://github.com/guillaume-be/rust-bert guillaume-be/rust-bert - Rust native ready-to-use NLP pipelines and transformer-based models (BERT, DistilBERT, GPT2,...)]
sno2/bertml - Use common pre-trained ML models in Deno!
* [https://github.com/sno2/bertml sno2/bertml - Use common pre-trained ML models in Deno!]<br>
cpcdoy/rust-sbert - Rust port of sentence-transformers (https://github.com/UKPLab/sentence-transformers)
* [https://github.com/cpcdoy/rust-sbert cpcdoy/rust-sbert]<br>
vongaisberg/gpt3_macro - Rust macro that uses GPT3 codex to generate code at compiletime
* [https://github.com/UKPLab/sentence-transformers Rust port of sentence-transformers]<br>
proycon/deepfrog - An NLP-suite powered by deep learning
* [https://github.com/vongaisberg/gpt3_macro vongaisberg/gpt3_macro - Rust macro that uses GPT3 codex to generate code at compiletime]<br>
ferristseng/rust-tfidf - Library to calculate TF-IDF
* [https://github.com/proycon/deepfrog proycon/deepfrog - An NLP-suite powered by deep learning]<br>
messense/fasttext-rs - fastText Rust binding
* [https://github.com/ferristseng/rust-tfidf ferristseng/rust-tfidf - Library to calculate TF-IDF]<br>
mklf/word2vec-rs - pure rust implementation of word2vec
* [https://github.com/messense/fasttext-rs messense/fasttext-rs - fastText Rust binding]<br>
DimaKudosh/word2vec - Rust interface to word2vec.
* [https://github.com/mklf/word2vec-rs mklf/word2vec-rs - pure rust implementation of word2vec]<br>
lloydmeta/sloword2vec-rs - A naive (read: slow) implementation of Word2Vec. Uses BLAS behind the scenes for speed.
* [https://github.com/DimaKudosh/word2vec DimaKudosh/word2vec - Rust interface to word2vec.]<br>
* [https://github.com/lloydmeta/sloword2vec-rs lloydmeta/sloword2vec-rs - A naive (read: slow) implementation of Word2Vec. Uses BLAS behind the scenes for speed.]<br>


==Рекомендательные системы==
==РЕКОМЕНДАТЕЛЬНЫЕ СИСТЕМЫ==
PersiaML/PERSIA - High performance distributed framework for training deep learning recommendation models based on PyTorch.
* [https://github.com/PersiaML/PERSIA PersiaML/PERSIA - High performance distributed framework for training deep learning recommendation models based on PyTorch.]<br>
jackgerrits/vowpalwabbit-rs - 🦀🐇 Rusty VowpalWabbit
* [https://github.com/jackgerrits/vowpalwabbit-rs jackgerrits/vowpalwabbit-rs Rusty VowpalWabbit]<br>
outbrain/fwumious_wabbit - Fwumious Wabbit, fast on-line machine learning toolkit written in Rust
* [https://github.com/outbrain/fwumious_wabbit outbrain/fwumious_wabbit - Fwumious Wabbit, fast on-line machine learning toolkit written in Rust]<br>
hja22/rucommender - Rust implementation of user-based collaborative filtering
* [https://github.com/hja22/rucommender hja22/rucommender - Rust implementation of user-based collaborative filtering]<br>
maciejkula/sbr-rs - Deep recommender systems for Rust
* [https://github.com/maciejkula/sbr-rs maciejkula/sbr-rs - Deep recommender systems for Rust]<br>
chrisvittal/quackin - A recommender systems framework for Rust
* [https://github.com/chrisvittal/quackin chrisvittal/quackin - A recommender systems framework for Rust]<br>
snd/onmf - fast rust implementation of online nonnegative matrix factorization as laid out in the paper "detect and track latent factors with online nonnegative matrix factorization"
* [https://github.com/snd/onmf snd/onmf - fast rust implementation of online nonnegative matrix factorization as laid out in the paper "detect and track latent factors with online nonnegative matrix factorization"]<br>
rhysnewell/nymph - Non-Negative Matrix Factorization in Rust
* [https://github.com/rhysnewell/nymph rhysnewell/nymph - Non-Negative Matrix Factorization in Rust]<br>


==Работа с текстом==
==РАБОТА С ТЕКСТОМ==
quickwit-inc/quickwit - Quickwit is a big data search engine.
* [https://github.com/quickwit-inc/quickwitquickwit-inc/quickwit Quickwit is a big data search engine.]<br>
bayard-search/bayard - A full-text search and indexing server written in Rust.
* [https://github.com/bayard-search/bayard bayard-search/bayard Full-text search and indexing server written in Rust.]<br>
neuml/txtai.rs - AI-powered search engine for Rust
* [https://github.com/neuml/txtai.rs neuml/txtai.rs AI-powered search engine for Rust]<br>
meilisearch/MeiliSearch - Lightning Fast, Ultra Relevant, and Typo-Tolerant Search Engine
* [https://github.com/meilisearch/MeiliSearch meilisearch/MeiliSearch - Lightning Fast, Ultra Relevant, and Typo-Tolerant Search Engine]<br>
toshi-search/Toshi - A full-text search engine in rust
* [https://github.com/toshi-search/Toshi toshi-search/Toshi Full-text search engine in rust]<br>
BurntSushi/fst - Represent large sets and maps compactly with finite state transducers.
* [https://github.com/BurntSushi/fst BurntSushi/fst Represent large sets and maps compactly with finite state transducers.]<br>
tantivy-search/tantivy - Tantivy is a full-text search engine library inspired by Apache Lucene and written in Rust
* [https://github.com/tantivy-search/tantivy tantivy-search/tantivy Tantivy is a full-text search engine library inspired by Apache Lucene and written in Rust]<br>
tinysearch/tinysearch - 🔍 Tiny, full-text search engine for static websites built with Rust and Wasm
* [https://github.com/tinysearch/tinysearch tinysearch/tinysearch  🔍 Tiny, full-text search engine for static websites built with Rust and Wasm]<br>
quantleaf/probly-search - A lightweight full-text search library that provides full control over the scoring calculations
* [https://github.com/quantleaf/probly-search quantleaf/probly-search Lightweight full-text search library that provides full control over the scoring calculations]<br>
https://github.com/andylokandy/simsearch-rs - A simple and lightweight fuzzy search engine that works in memory, searching for similar strings
* [https://github.com/andylokandy/simsearch-rs Simple and lightweight fuzzy search engine that works in memory, searching for similar strings]<br>
jameslittle230/stork - 🔎 Impossibly fast web search, made for static sites.
* [https://github.com/jameslittle230/stork jameslittle230/stork Impossibly fast web search, made for static sites.]<br>
elastic/elasticsearch-rs - Official Elasticsearch Rust Client
* [https://github.com/elastic/elasticsearch-rs elastic/elasticsearch-rs - Official Elasticsearch Rust Client]<br>


==Алгоритмы поиска ближайших соседей.==
==АЛГОРИТМЫ ПОИСКА БЛИЖАЙШИХ СОСЕДЕЙ==
Enet4/faiss-rs - Rust language bindings for Faiss
* [https://github.com/Enet4/faiss-rs Enet4/faiss-rs - Rust language bindings for Faiss]<br>
rust-cv/hnsw - HNSW ANN from the paper "Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs"
* [https://github.com/rust-cv/hnsw rust-cv/hnsw - HNSW ANN from the paper "Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs"]<br>
hora-search/hora - 🚀 efficient approximate nearest neighbor search algorithm collections library, which implemented with Rust 🦀. horasearch.com
* [https://github.com/hora-search/hora hora-search/hora Efficient approximate nearest neighbor search algorithm collections library, which implemented with Rust. horasearch.com]<br>
InstantDomain/instant-distance - Fast approximate nearest neighbor searching in Rust, based on HNSW index
* [https://github.com/InstantDomain/instant-distance InstantDomain/instant-distance - Fast approximate nearest neighbor searching in Rust, based on HNSW index]<br>
lerouxrgd/ngt-rs - Rust wrappers for NGT approximate nearest neighbor search
* [https://github.com/lerouxrgd/ngt-rs lerouxrgd/ngt-rs - Rust wrappers for NGT approximate nearest neighbor search]<br>
granne/granne - Graph-based Approximate Nearest Neighbor Search
* [https://github.com/granne/granne granne/granne - Graph-based Approximate Nearest Neighbor Search]<br>
u1roh/kd-tree - k-dimensional tree in Rust. Fast, simple, and easy to use.
* [https://github.com/u1roh/kd-tree u1roh/kd-tree - k-dimensional tree in Rust. Fast, simple, and easy to use.]<br>
qdrant/qdrant - Qdrant - vector similarity search engine with extended filtering support
* [https://github.com/qdrant/qdrant qdrant/qdrant - Qdrant - vector similarity search engine with extended filtering support]<br>
rust-cv/hwt - Hamming Weight Tree from the paper "Online Nearest Neighbor Search in Hamming Space"
* [https://github.com/rust-cv/hwt rust-cv/hwt - Hamming Weight Tree from the paper "Online Nearest Neighbor Search in Hamming Space"]<br>
fulara/kdtree-rust - kdtree implementation for rust.
* [https://github.com/fulara/kdtree-rust fulara/kdtree-rust - kdtree implementation for rust.]<br>
mrhooray/kdtree-rs - K-dimensional tree in Rust for fast geospatial indexing and lookup
* [https://github.com/mrhooray/kdtree-rs mrhooray/kdtree-rs - K-dimensional tree in Rust for fast geospatial indexing and lookup]<br>
kornelski/vpsearch - C library for finding nearest (most similar) element in a set
* [https://github.com/kornelski/vpsearch kornelski/vpsearch - C library for finding nearest (most similar) element in a set]<br>
petabi/petal-neighbors - Nearest neighbor search algorithms including a ball tree and a vantage point tree.
* [https://github.com/petabi/petal-neighbors petabi/petal-neighbors - Nearest neighbor search algorithms including a ball tree and a vantage point tree.]<br>
ritchie46/lsh-rs - Locality Sensitive Hashing in Rust with Python bindings
* [https://github.com/ritchie46/lsh-rs ritchie46/lsh-rs - Locality Sensitive Hashing in Rust with Python bindings]<br>
kampersanda/mih-rs - Rust implementation of multi-index hashing for neighbor searches on 64-bit codes in the Hamming space
* [https://github.com/kampersanda/mih-rs kampersanda/mih-rs - Rust implementation of multi-index hashing for neighbor searches on 64-bit codes in the Hamming space]<br>


==Обучение с подкреплением==
==ОБУЧЕНИЕ С ПОДКРЕПЛЕНИЕМ==
taku-y/border - Border is a reinforcement learning library in Rust.
* [https://github.com/taku-y/border taku-y/border Border is a reinforcement learning library in Rust]<br>
NivenT/REnforce - Reinforcement learning library written in Rust
* [https://github.com/NivenT/REnforce NivenT/REnforce Reinforcement learning library written in Rust]<br>
edlanglois/relearn - Reinforcement learning with Rust
* [https://github.com/edlanglois/relearn edlanglois/relearn Reinforcement learning with Rust]<br>
tspooner/rsrl - A fast, safe and easy to use reinforcement learning framework in Rust.
* [https://github.com/tspooner/rsrl tspooner/rsrl Fast, safe and easy to use reinforcement learning framework in Rust.]<br>
milanboers/rurel - Flexible, reusable reinforcement learning (Q learning) implementation in Rust
* [https://github.com/milanboers/rurel milanboers/rurel Flexible, reusable reinforcement learning (Q learning) implementation in Rust]<br>
Ragnaroek/bandit - Bandit Algorithms in Rust
* [https://github.com/Ragnaroek/banditRagnaroek/bandit Bandit Algorithms in Rust]<br>
MrRobb/gym-rs - OpenAI Gym bindings for Rust
* [https://github.com/mrrobb/gym-rs MrRobb/gym-rs - OpenAI Gym bindings for Rust]<br>


==Обучение с учителем==
==ОБУЧЕНИЕ С УЧИТЕЛЕМ==
tomtung/omikuji - An efficient implementation of Partitioned Label Trees & its variations for extreme multi-label classification
* [https://github.com/tomtung/omikuji tomtung/omikuji - An efficient implementation of Partitioned Label Trees & its variations for extreme multi-label classification] <br>
shadeMe/liblinear-rs - Rust language bindings for the LIBLINEAR C/C++ library.
* [https://github.com/shademe/liblinear-rs shadeMe/liblinear-rs - Rust language bindings for the LIBLINEAR C/C++ library.]<br>
messense/crfsuite-rs - Rust binding to crfsuite
* [https://github.com/messense/crfsuite-rs messense/crfsuite-rs - Rust binding to crfsuite]<br>
ralfbiedert/ffsvm-rust - FFSVM stands for "Really Fast Support Vector Machine"
* [https://github.com/ralfbiedert/ffsvm-rust ralfbiedert/ffsvm-rust - FFSVM stands for "Really Fast Support Vector Machine"]<br>
zenoxygen/bayespam - A simple bayesian spam classifier written in Rust.
* [https://github.com/zenoxygen/bayespam zenoxygen/bayespam - A simple bayesian spam classifier written in Rust.]<br>
Rui_Vieira/naive-bayesnaive-bayes - A Naive Bayes classifier written in Rust.
* [https://gitlab.com/ruivieira/naive-bayes Rui_Vieira/naive-bayesnaive-bayes - A Naive Bayes classifier written in Rust.]<br>
Rui_Vieira/random-forests - A Rust library for Random Forests.
* [https://gitlab.com/ruivieira/random-forests Rui_Vieira/random-forests - A Rust library for Random Forests.]<br>
sile/randomforest - A random forest implementation in Rust
* [https://github.com/sile/randomforest sile/randomforest - A random forest implementation in Rust]<br>
tomtung/craftml-rs - A Rust🦀 implementation of CRAFTML, an Efficient Clustering-based Random Forest for Extreme Multi-label Learning
* [https://github.com/tomtung/craftml-rs tomtung/craftml-rs - A Rust🦀 implementation of CRAFTML, an Efficient Clustering-based Random Forest for Extreme Multi-label Learning]<br>
nkaush/naive-bayes-rs - A Rust library with homemade machine learning models to classify the MNIST dataset. Built in an attempt to get familiar with advanced Rust concepts.
* [https://github.com/nkaush/naive-bayes-rs nkaush/naive-bayes-rs - A Rust library with homemade machine learning models to classify the MNIST dataset. Built in an attempt to get familiar with advanced Rust concepts.]<br>


==Обучение без учителя==
==ОБУЧЕНИЕ БЕЗ УЧИТЕЛЯ==
frjnn/bhtsne - Barnes-Hut t-SNE implementation written in Rust.
* [https://github.com/frjnn/bhtsne frjnn/bhtsne - Barnes-Hut t-SNE implementation written in Rust.]<br>
vaaaaanquish/label-propagation-rs - Label Propagation Algorithm by Rust. Label propagation (LP) is graph-based semi-supervised learning (SSL). LGC and CAMLP have been implemented.
* [https://github.com/vaaaaanquish/label-propagation-rs vaaaaanquish/label-propagation-rs - Label Propagation Algorithm by Rust. Label propagation (LP) is graph-based semi-supervised learning (SSL). LGC and CAMLP have been implemented.]<br>
nmandery/extended-isolation-forest - Rust port of the extended isolation forest algorithm for anomaly detection
* [https://github.com/nmandery/extended-isolation-forest nmandery/extended-isolation-forest - Rust port of the extended isolation forest algorithm for anomaly detection]<br>
avinashshenoy97/RusticSOM - Rust library for Self Organising Maps (SOM).
* [https://github.com/avinashshenoy97/RusticSOM avinashshenoy97/RusticSOM - Rust library for Self Organising Maps (SOM).]<br>
diffeo/kodama - Fast hierarchical agglomerative clustering in Rust.
* [https://github.com/diffeo/kodama diffeo/kodama - Fast hierarchical agglomerative clustering in Rust.]<br>
kno10/rust-kmedoids - k-Medoids clustering in Rust with the FasterPAM algorithm
* [https://github.com/kno10/rust-kmedoids kno10/rust-kmedoids - k-Medoids clustering in Rust with the FasterPAM algorithm]<br>
petabi/petal-clustering - DBSCAN and OPTICS clustering algorithms.
* [https://github.com/petabi/petal-clustering petabi/petal-clustering - DBSCAN and OPTICS clustering algorithms.]<br>
savish/dbscan - A naive DBSCAN implementation in Rust
* [https://github.com/savish/dbscan savish/dbscan - A naive DBSCAN implementation in Rust]<br>
gu18168/DBSCANSD - Rust implementation for DBSCANSD, a trajectory clustering algorithm.
* [https://github.com/gu18168/DBSCANSD gu18168/DBSCANSD - Rust implementation for DBSCANSD, a trajectory clustering algorithm.]<br>
lazear/dbscan - Dependency free implementation of DBSCAN clustering in Rust
* [https://github.com/lazear/dbscan lazear/dbscan - Dependency free implementation of DBSCAN clustering in Rust]<br>
whizsid/kddbscan-rs - A rust library inspired by kDDBSCAN clustering algorithm
* [https://github.com/whizsid/kddbscan-rs whizsid/kddbscan-rs - A rust library inspired by kDDBSCAN clustering algorithm]<br>
Sauro98/appr_dbscan_rust - Program implementing the approximate version of DBSCAN introduced by Gan and Tao
* [https://github.com/Sauro98/appr_dbscan_rust Sauro98/appr_dbscan_rust - Program implementing the approximate version of DBSCAN introduced by Gan and Tao]<br>
quietlychris/density_clusters - A naive density-based clustering algorithm written in Rust
* [https://github.com/quietlychris/density_clusters quietlychris/density_clusters - A naive density-based clustering algorithm written in Rust]<br>
milesgranger/gap_statistic - Dynamically get the suggested clusters in the data for unsupervised learning.
* [https://github.com/milesgranger/gap_statistic milesgranger/gap_statistic - Dynamically get the suggested clusters in the data for unsupervised learning.]<br>
genbattle/rkm - Generic k-means implementation written in Rust
* [https://github.com/genbattle/rkm genbattle/rkm - Generic k-means implementation written in Rust]<br>
selforgmap/som-rust - Self Organizing Map (SOM) is a type of Artificial Neural Network (ANN) that is trained using an unsupervised, competitive learning to produce a low dimensional, discretized representation (feature map) of higher dimensional data.
* [https://github.com/selforgmap/som-rust selforgmap/som-rust - Self Organizing Map (SOM) is a type of Artificial Neural Network (ANN) that is trained using an unsupervised, competitive learning to produce a low dimensional, discretized representation (feature map) of higher dimensional data.]<br>


==Статистические модели==
==СТАТИСТИЧЕСКИЕ МОДЕЛИ==
Redpoll/changepoint - Includes the following change point detection algorithms: Bocpd -- Online Bayesian Change Point Detection Reference. BocpdTruncated -- Same as Bocpd but truncated the run-length distribution when those lengths are unlikely.
* [https://gitlab.com/Redpoll/changepoint Redpoll/changepoint - Includes the following change point detection algorithms: Bocpd -- Online Bayesian Change Point Detection Reference. BocpdTruncated -- Same as Bocpd but truncated the run-length distribution when those lengths are unlikely.]<br>
krfricke/arima - ARIMA modelling for Rust
* [https://github.com/krfricke/arima krfricke/arima - ARIMA modelling for Rust]<br>
Daingun/automatica - Automatic Control Systems Library
* [https://gitlab.com/daingun/automatica Daingun/automatica - Automatic Control Systems Library]<br>
rbagd/rust-linearkalman - Kalman filtering and smoothing in Rust
* [https://github.com/rbagd/rust-linearkalman rbagd/rust-linearkalman - Kalman filtering and smoothing in Rust]<br>
sanity/pair_adjacent_violators - An implementation of the Pair Adjacent Violators algorithm for isotonic regression in Rust
* [https://github.com/sanity/pair_adjacent_violators sanity/pair_adjacent_violators - An implementation of the Pair Adjacent Violators algorithm for isotonic regression in Rust]<br>


==Эволюционные алгоритмы==
==ЭВОЛЮЦИОННЫЕ АЛГОРИТМЫ==
martinus/differential-evolution-rs - Generic Differential Evolution for Rust
* [https://github.com/martinus/differential-evolution-rs martinus/differential-evolution-rs - Generic Differential Evolution for Rust]<br>
innoave/genevo - Execute genetic algorithm (GA) simulations in a customizable and extensible way.
* [https://github.com/innoave/genevo innoave/genevo - Execute genetic algorithm (GA) simulations in a customizable and extensible way.]<br>
Jeffail/spiril - Rust library for genetic algorithms
* [https://github.com/Jeffail/spiril Jeffail/spiril - Rust library for genetic algorithms]<br>
sotrh/rust-genetic-algorithm - Example of a genetic algorithm in Rust and Python
* [https://github.com/sotrh/rust-genetic-algorithm sotrh/rust-genetic-algorithm - Example of a genetic algorithm in Rust and Python]<br>
willi-kappler/darwin-rs - darwin-rs, evolutionary algorithms with rust
* [https://github.com/willi-kappler/darwin-rs willi-kappler/darwin-rs - darwin-rs, evolutionary algorithms with Rust]<br>


==Еще проекты==
==ДРУГИЕ ПРОЕКТЫ==
Are we learning yet?, A work-in-progress to catalog the state of machine learning in Rust
* [http://www.arewelearningyet.com/ Are we learning yet?, A work-in-progress to catalog the state of machine learning in Rust]<br>
e-tony/best-of-ml-rust, A ranked list of awesome machine learning Rust libraries
* [https://github.com/e-tony/best-of-ml-rust e-tony/best-of-ml-rust, A ranked list of awesome machine learning Rust libraries]<br>
The Best 51 Rust Machine learning Libraries, RustRepo
* [https://rustrepo.com/catalog/rust-machine-learning_newest_1 The Best 51 Rust Machine learning Libraries, RustRepo]<br>
rust-unofficial/awesome-rust, A curated list of Rust code and resources
* [https://github.com/rust-unofficial/awesome-rust rust-unofficial/awesome-rust, A curated list of Rust code and resources]<br>
Top 16 Rust Machine learning Projects, Open-source Rust projects categorized as Machine learning
* [https://www.libhunt.com/l/rust/t/machine-learning Top 16 Rust Machine learning Projects, Open-source Rust projects categorized as Machine learning]<br>
39+ Best Rust Machine learning frameworks, libraries, software and resourcese, ReposHub
* [https://reposhub.com/rust/machine-learning 39+ Best Rust Machine learning frameworks, libraries, software and resourcese, ReposHub]<br>


==Блоги==
==БЛОГИ==
About Rust’s Machine Learning Community, Medium, 2016/1/6, Autumn Engineering
* [https://medium.com/@autumn_eng/about-rust-s-machine-learning-community-4cda5ec8a790#.hvkp56j3f About Rust’s Machine Learning Community, Medium, 2016/1/6, Autumn Engineering]<br>
Rust vs Python: Technology And Business Comparison, 2021/3/4, Miłosz Kaczorowski
* [https://www.ideamotive.co/blog/rust-vs-python-technology-and-business-comparison Rust vs Python: Technology And Business Comparison, 2021/3/4, Miłosz Kaczorowski]<br>
I wrote one of the fastest DataFrame libraries, 2021/2/28, Ritchie Vink
* [https://www.ritchievink.com/blog/2021/02/28/i-wrote-one-of-the-fastest-dataframe-libraries I wrote one of the fastest DataFrame libraries, 2021/2/28, Ritchie Vink]<br>
Polars: The fastest DataFrame library you've never heard of 2021/1/19, Analytics Vidhya
* [https://www.analyticsvidhya.com/blog/2021/06/polars-the-fastest-dataframe-library-youve-never-heard-of Polars: The fastest DataFrame library you've never heard of 2021/1/19, Analytics Vidhya]<br>
Data Manipulation: Polars vs Rust, 2021/3/13, Xavier Tao
* [https://able.bio/haixuanTao/data-manipulation-polars-vs-rust--3def44c8 Data Manipulation: Polars vs Rust, 2021/3/13, Xavier Tao]<br>
State of Machine Learning in Rust – Ehsan's Blog, 2019/5/13, Published by Ehsan
* [https://ehsanmkermani.com/2019/05/13/state-of-machine-learning-in-rust/ State of Machine Learning in Rust – Ehsan's Blog, 2019/5/13, Published by Ehsan]<br>
Ritchie Vink, Machine Learning Engineer, writes Polars, one of the fastest DataFrame libraries in Python and Rust, Xomnia, 2021/5/11
* [https://www.xomnia.com/post/ritchie-vink-writes-polars-one-of-the-fastest-dataframe-libraries-in-python-and-rust/ Ritchie Vink, Machine Learning Engineer, writes Polars, one of the fastest DataFrame libraries in Python and Rust, Xomnia, 2021/5/11]<br>
Quickwit: A highly cost-efficient search engine in Rust, 2021/7/13, quickwit, PAUL MASUREL
* [https://quickwit.io/blog/quickwit-first-release/ Quickwit: A highly cost-efficient search engine in Rust, 2021/7/13, quickwit, PAUL MASUREL]<br>
Data Manipulation: Polars vs Rust, 2021/3/13, Xavier Tao
* [https://serokell.io/blog/rust-in-production-qovery Check out Rust in Production, 2021/8/10, Qovery, @serokell]<br>
Check out Rust in Production, 2021/8/10, Qovery, @serokell
* [https://medium.com/geekculture/why-i-started-rust-instead-of-stick-to-python-626bab07479a Why I started Rust instead of stick to Python, 2021/9/26, Medium, Geek Culture, Marshal SHI]<br>
Why I started Rust instead of stick to Python, 2021/9/26, Medium, Geek Culture, Marshal SHI


==Обучения==
==ОБУЧЕНИЕ==
Rust Machine Learning Book, Examples of KMeans and DBSCAN with linfa-clustering
* [https://rust-ml.github.io/book/chapter_1.html Rust Machine Learning Book, Examples of KMeans and DBSCAN with linfa-clustering]<br>
Artificial Intelligence and Machine Learning – Practical Rust Projects: Building Game, Physical Computing, and Machine Learning Applications – Dev Guis , 2021/5/19
* [http://devguis.com/6-artificial-intelligence-and-machine-learning-practical-rust-projects-building-game-physical-computing-and-machine-learning-applications.html Artificial Intelligence and Machine Learning – Practical Rust Projects(Building Game, Physical Computing) – Dev Guis , 2021/5/19]<br>
Machine learning in Rust using Linfa, LogRocket Blog, 2021/4/30, Timeular, Mario Zupan, Examples of LogisticRegression
* [https://blog.logrocket.com/machine-learning-in-rust-using-linfa/ Machine learning in Rust using Linfa, LogRocket Blog, 2021/4/30, Timeular, Mario Zupan, Examples of LogisticRegression]<br>
Machine Learning in Rust, Smartcore, Medium, The Startup, 2021/1/15, Vlad Orlov, Examples of LinerRegression, Random Forest Regressor, and K-Fold
* [https://medium.com/swlh/machine-learning-in-rust-smartcore-2f472d1ce83 Machine Learning in Rust, Smartcore, Medium, The Startup, 2021/1/15] (c) [https://volodymyr-orlov.medium.com/ Vlad Orlov]<br>
Machine Learning in Rust, Logistic Regression, Medium, The Startup, 2021/1/6, Vlad Orlov
* [https://medium.com/swlh/machine-learning-in-rust-logistic-regression-74d6743df161 Machine Learning in Rust, Logistic Regression, Medium, The Startup, 2021/1/6] (c) [https://volodymyr-orlov.medium.com/ Vlad Orlov]<br>
Machine Learning in Rust, Linear Regression, Medium, The Startup, 2020/12/16, Vlad Orlov
* [https://medium.com/swlh/machine-learning-in-rust-linear-regression-edef3fb65f93 Machine Learning in Rust, Linear Regression, Medium, The Startup, 2020/12/16] (c) [https://volodymyr-orlov.medium.com/ Vlad Orlov]<br>
Machine Learning in Rust, 2016/3/7, James, Examples of LogisticRegressor
* [https://athemathmo.github.io/2016/03/07/rusty-machine.html Machine Learning in Rust, 2016/3/7, James, Examples of LogisticRegressor]<br>
Machine Learning and Rust (Part 1): Getting Started!, Level Up Coding, 2021/1/9, Stefano Bosisio
* [https://levelup.gitconnected.com/machine-learning-and-rust-part-1-getting-started-745885771bc2 Machine Learning and Rust (Part 1): Getting Started!, Level Up Coding, 2021/1/9, Stefano Bosisio]<br>
Machine Learning and Rust (Part 2): Linear Regression, Level Up Coding, 2021/6/15, Stefano Bosisio
* [https://levelup.gitconnected.com/machine-learning-and-rust-part-2-linear-regression-d3b820ed28f9 Machine Learning and Rust (Part 2): Linear Regression, Level Up Coding, 2021/6/15, Stefano Bosisio]<br>
Machine Learning and Rust (Part 3): Smartcore, Dataframe, and Linear Regression, Level Up Coding, 2021/7/1, Stefano Bosisio
* [https://levelup.gitconnected.com/machine-learning-and-rust-part-3-smartcore-dataframe-and-linear-regression-10451fdc2e60 Machine Learning and Rust (Part 3): Smartcore, Dataframe, and Linear Regression, Level Up Coding, 2021/7/1, Stefano Bosisio]<br>
Tensorflow Rust Practical Part 1, Programmer Sought, 2018
* [https://www.programmersought.com/article/18696273900/ Tensorflow Rust Practical Part 1, Programmer Sought, 2018]<br>
A Machine Learning introduction to ndarray, RustFest 2019, 2019/11/12, Luca Palmieri
* [https://barcelona.rustfest.eu/sessions/machine-learning-ndarray A Machine Learning introduction to ndarray, RustFest 2019, 2019/11/12] (c) [https://github.com/LukeMathWalker Luca Palmieri]<br>
Simple Linear Regression from scratch in Rust, Web Development, Software Architecture, Algorithms and more, 2018/12/13, philipp
* [https://cheesyprogrammer.com/2018/12/13/simple-linear-regression-from-scratch-in-rust/ Simple Linear Regression from scratch in Rust, Web Development, Software Architecture, Algorithms and more, 2018/12/13, philipp]<br>
Interactive Rust in a REPL and Jupyter Notebook with EVCXR, Depth-First, 2020/9/21, Richard L. Apodaca
* [https://depth-first.com/articles/2020/09/21/interactive-rust-in-a-repl-and-jupyter-notebook-with-evcxr/ Interactive Rust in a REPL and Jupyter Notebook with EVCXR, Depth-First, 2020/9/21, Richard L. Apodaca]<br>
Rust for Data Science: Tutorial 1, dev, 2021/8/25, Davide Del Papa
* [https://dev.to/davidedelpapa/rust-for-data-science-tutorial-1-4g5j Rust for Data Science: Tutorial 1, dev, 2021/8/25, Davide Del Papa]<br>
petgraph_review, 2019/10/11, Timothy Hobbs
* [https://timothy.hobbs.cz/rust-play/petgraph_review.html petgraph_review, 2019/10/11, Timothy Hobbs]<br>
Rust for ML. Rust, Medium, Tempus Ex, 2021/8/1, Michael Naquin
* [https://medium.com/tempus-ex/rust-for-ml-fba0421b0959 Rust for ML. Rust, Medium, Tempus Ex, 2021/8/1, Michael Naquin]<br>
Adventures in Drone Photogrammetry Using Rust and Machine Learning (Image Segmentation with linfa and DBSCAN), 2021/11/14, CHRISTOPHER MORAN
* [http://cmoran.xyz/writing/adventures_in_photogrammetry Adventures in Drone Photogrammetry Using Rust and Machine Learning (Image Segmentation with linfa and DBSCAN), 2021/11/14, CHRISTOPHER MORAN]<br>


==Прикладные ресурсы==
==ПРИКЛАДНЫЕ РЕСУРСЫ==
Deep Learning in Rust: baby steps, Medium, 2016/2/2, Theodore DeRego
* [https://medium.com/@tedsta/deep-learning-in-rust-7e228107cccc Deep Learning in Rust: baby steps, Medium, 2016/2/2, Theodore DeRego]<br>
A Rust SentencePiece implementation, Rust NLP tales, 2020/5/30
* [https://guillaume-be.github.io/2020-05-30/sentence_piece A Rust SentencePiece implementation, Rust NLP tales, 2020/5/30]<br>
Accelerating text generation with Rust, Rust NLP tales, 2020/11/21
* [https://guillaume-be.github.io/2020-11-21/generation_benchmarks Accelerating text generation with Rust, Rust NLP tales, 2020/11/21]<br>
A Simple Text Summarizer written in Rust, Towards Data Science, 2020/11/24, Charles Chan, Examples of Text Sentence Vector, Cosine Distance and PageRank
* [https://towardsdatascience.com/a-simple-text-summarizer-written-in-rust-4df05f9327a5 A Simple Text Summarizer written in Rust, Towards Data Science, 2020/11/24,Examples of Text Sentence Vector, Cosine Distance and PageRank] (c)[https://chancharles.medium.com/ Charles Chan]<br>
Extracting deep learning image embeddings in Rust, RecoAI, 2021/6/1, Paweł Jankiewic, Examples of ONNX
* [https://logicai.io/blog/extracting-image-embeddings/ Extracting deep learning image embeddings in Rust, RecoAI, 2021/6/1, Paweł Jankiewic, Examples of ONNX]<br>
Deep Learning in Rust with GPU, 2021/7/30, Xavier Tao
* [https://able.bio/haixuanTao/deep-learning-in-rust-with-gpu--26c53a7f Deep Learning in Rust with GPU, 2021/7/30, Xavier Tao]<br>
tch-rs pretrain example - Docker for PyTorch rust bindings tch-rs. Example of pretrain model, 2021/8/15, vaaaaanquish
* [https://github.com/vaaaaanquish/tch-rs-pretrain-example-docker tch-rs pretrain example - Docker for PyTorch rust bindings tch-rs. Example of pretrain model, 2021/8/15, vaaaaanquish]<br>
Rust ANN search Example - Image search example by approximate nearest-neighbor library In Rust, 2021/8/15, vaaaaanquish
* [https://github.com/vaaaaanquish/rust-ann-search-example Rust ANN search Example - Image search example by approximate nearest-neighbor library In Rust, 2021/8/15, vaaaaanquish]<br>
dzamkov/deep-learning-test - Implementing deep learning in Rust using just a linear algebra library (nalgebra), 2021/8/30, dzamkov
* [https://github.com/dzamkov/deep-learning-test dzamkov/deep-learning-test - Implementing deep learning in Rust using just a linear algebra library (nalgebra), 2021/8/30, dzamkov]<br>
vaaaaanquish/rust-machine-learning-api-example - The axum example that uses resnet224 to infer images received in base64 and returns the results., 2021/9/7, vaaaaanquish
* [https://github.com/vaaaaanquish/rust-machine-learning-api-example vaaaaanquish/rust-machine-learning-api-example - The axum example that uses resnet224 to infer images received in base64 and returns the results., 2021/9/7, vaaaaanquish]<br>
Rust for Machine Learning: Benchmarking Performance in One-shot - A Rust implementation of Siamese Neural Networks for One-shot Image Recognition for benchmarking performance and results, UofT Machine Intelligence Student Team
* [https://utmist.gitlab.io/projects/rust-ml-oneshot/ Rust for Machine Learning: Benchmarking Performance in One-shot - A Rust implementation of Siamese Neural Networks for One-shot Image Recognition for benchmarking performance and results, UofT Machine Intelligence Student Team]<br>
Why Wallaroo Moved From Pony To Rust, 2021/8/19, Wallaroo.ai
* [https://wallarooai.medium.com/why-wallaroo-moved-from-pony-to-rust-292e7339fc34 Why Wallaroo Moved From Pony To Rust, 2021/8/19, Wallaroo.ai]<br>
epwalsh/rust-dl-webserver - Example of serving deep learning models in Rust with batched prediction, 2021/11/16, epwalsh
* [https://github.com/epwalsh/rust-dl-webserver epwalsh/rust-dl-webserver - Example of serving deep learning models in Rust with batched prediction, 2021/11/16, epwalsh]<br>
Production users - Rust Programming Language, by rust-lang.org
* [https://www.rust-lang.org/production/users Production users - Rust Programming Language, by rust-lang.org]<br>
Taking ML to production with Rust: a 25x speedup, A LEARNING JOURNAL, 2019/12/1, @algo_luca
* [https://www.lpalmieri.com/posts/2019-12-01-taking-ml-to-production-with-rust-a-25x-speedup/ Taking ML to production with Rust: a 25x speedup, A LEARNING JOURNAL, 2019/12/1] (c) [https://twitter.com/algo_luca @algo_luca]<br>
9 Companies That Use Rust in Production, serokell, 2020/11/18, Gints Dreimanis
* [https://serokell.io/blog/rust-companies 9 Companies That Use Rust in Production, serokell, 2020/11/18, Gints Dreimanis]<br>
Masked Language Model on Wasm, BERT on flontend examples, optim-corp/masked-lm-wasm, 2021/8/27, Optim
* [https://github.com/optim-corp/masked-lm-wasm/ Masked Language Model on Wasm, BERT on flontend examples, optim-corp/masked-lm-wasm, 2021/8/27, Optim]<br>
Serving TensorFlow with Actix-Web, kykosic/actix-tensorflow-example
* [https://github.com/kykosic/actix-tensorflow-example Serving TensorFlow with Actix-Web, kykosic/actix-tensorflow-example]<br>
Serving PyTorch with Actix-Web, kykosic/actix-pytorch-example
* [https://github.com/kykosic/actix-pytorch-example Serving PyTorch with Actix-Web, kykosic/actix-pytorch-example]<br>


==Форумы==
==ФОРУМЫ==
Natural Language Processing in Rust : rust, 2016/12/6
* [https://www.reddit.com/r/rust/comments/5jj8vr/natural_language_processing_in_rust Natural Language Processing in Rust : rust, 2016/12/6]<br>
Future prospect of Machine Learning in Rust Programming Language : MachineLearning, 2017/11/11
* [https://www.reddit.com/r/MachineLearning/comments/7iz51p/d_future_prospect_of_machine_learning_in_rust/ Future prospect of Machine Learning in Rust Programming Language : MachineLearning, 2017/11/11]<br>
Interest for NLP in Rust? - The Rust Programming Language Forum, 2018/1/19
* [https://users.rust-lang.org/t/interest-for-nlp-in-rust/15331 Interest for NLP in Rust? - The Rust Programming Language Forum, 2018/1/19]<br>
Is Rust good for deep learning and artificial intelligence? - The Rust Programming Language Forum, 2018/11/18
* [https://users.rust-lang.org/t/is-rust-good-for-deep-learning-and-artificial-intelligence/22866 Is Rust good for deep learning and artificial intelligence? - The Rust Programming Language Forum, 2018/11/18]<br>
ndarray vs nalgebra : rust, 2019/5/28
* [https://www.reddit.com/r/rust/comments/btn1cz/ndarray_vs_nalgebra/ ndarray vs nalgebra : rust, 2019/5/28]<br>
Taking ML to production with Rust | Hacker News, 2019/12/2
* [https://news.ycombinator.com/item?id=21680965 Taking ML to production with Rust | Hacker News, 2019/12/2]<br>
Who is using Rust for Machine learning in production/research? : rust, 2020/4/5
* [https://www.reddit.com/r/rust/comments/fvehyq/d_who_is_using_rust_for_machine_learning_in/ Who is using Rust for Machine learning in production/research? : rust, 2020/4/5]<br>
Deep Learning in Rust, 2020/8/26
* [https://www.reddit.com/r/rust/comments/igz8iv/deep_learning_in_rust/ Deep Learning in Rust, 2020/8/26]<br>
SmartCore, fast and comprehensive machine learning library for Rust! : rust, 2020/9/29
* [https://www.reddit.com/r/rust/comments/j1mj1g/smartcore_fast_and_comprehensive_machine_learning/ SmartCore, fast and comprehensive machine learning library for Rust! : rust, 2020/9/29]<br>
Deep Learning in Rust with GPU on ONNX, 2021/7/31
* [https://www.reddit.com/r/MachineLearning/comments/ouul33/d_p_deep_learning_in_rust_with_gpu_on_onnx/ Deep Learning in Rust with GPU on ONNX, 2021/7/31]<br>
Rust vs. C++ the main differences between these popular programming languages, 2021/8/25
* [https://codilime.com/blog/rust-vs-cpp-the-main-differences-between-these-popular-programming-languages/ Rust vs. C++ the main differences between these popular programming languages, 2021/8/25]<br>
I wanted to share my experience of Rust as a deep learning researcher, 2021/9/2
* [https://www.reddit.com/r/rust/comments/pft9n9/i_wanted_to_share_my_experience_of_rust_as_a_deep/ I wanted to share my experience of Rust as a deep learning researcher, 2021/9/2]<br>
How far along is the ML ecosystem with Rust?, 2021/9/15
* [https://www.reddit.com/r/rust/comments/poglgg/how_far_along_is_the_ml_ecosystem_with_rust/ How far along is the ML ecosystem with Rust?, 2021/9/15]<br>


==Книги==
==КНИГИ==
Practical Machine Learning with Rust: Creating Intelligent Applications in Rust (English Edition), 2019/12/10, Joydeep BhattacharjeeWrite machine learning algorithms in Rust
* [https://amzn.to/3h7JV8U '''Practical Machine Learning with Rust: Creating Intelligent Applications in Rust (English Edition)''']<br>
Use Rust libraries for different tasks in machine learning
-- 2019/12/10, Joydeep BhattacharjeeWrite machine learning algorithms in Rust<br>
Create concise Rust packages for your machine learning applications
- Use Rust libraries for different tasks in machine learning<br>
Implement NLP and computer vision in Rust
- Create concise Rust packages for your machine learning applications<br>
Deploy your code in the cloud and on bare metal servers
- Implement NLP and computer vision in Rust<br>
source code: Apress/practical-machine-learning-w-rust
- Deploy your code in the cloud and on bare metal servers<br>
DATA ANALYSIS WITH RUST NOTEBOOKS, 2021/9/3, Shahin RostamiPlotting with Plotters and Plotly
* [https://github.com/Apress/practical-machine-learning-w-rust source code for this Book]<br>
Operations with ndarray
--
Descriptive Statistics
* [https://datacrayon.com/shop/product/data-analysis-with-rust-notebooks/ '''DATA ANALYSIS WITH RUST NOTEBOOKS''']<br>
Interactive Diagram
-- 2021/9/3, Shahin RostamiPlotting with Plotters and Plotly<br>
Visualisation of Co-occurring Types
- Operations with ndarray<br>
download source code and dataset
- Descriptive Statistics<br>
- Interactive Diagram<br>
- Visualisation of Co-occurring Types<br>
- download source code and dataset<br>
* [https://datacrayon.com/posts/programming/rust-notebooks/preface/ Full text book]<br>


full texthttps://datacrayon.com/posts/programming/rust-notebooks/preface/
==ВИДЕО УРОКИ==
 
* [https://www.youtube.com/watch?v=lY10kTcM8ek The /r/playrust Classifier: Real World Rust Data Science, RustConf 2016, 2016/10/05, Suchin Gururangan & Colin O'Brien]<br>
==Видео уроки==
* [https://www.youtube.com/watch?v=UHFlKAmANJg Building AI Units in Rust, FOSSASIA 2018, 2018/3/25, Vigneshwer Dhinakaran]<br>
The /r/playrust Classifier: Real World Rust Data Science, RustConf 2016, 2016/10/05, Suchin Gururangan & Colin O'Brien
* [https://www.youtube.com/watch?v=kytvDxxedWY Python vs Rust for Simulation, EuroPython 2019, 2019/7/10, Alisa Dammer]<br>
Building AI Units in Rust, FOSSASIA 2018, 2018/3/25, Vigneshwer Dhinakaran
* [https://www.youtube.com/watch?v=odI_LY8AIqo Machine Learning is changing - is Rust the right tool for the job?, RustLab 2019, 2019/10/31, Luca Palmieri]<br>
Python vs Rust for Simulation, EuroPython 2019, 2019/7/10, Alisa Dammer
* [https://www.youtube.com/watch?v=DUVE86yTfKU Using TensorFlow in Embedded Rust, 2020/09/29, Ferrous Systems GmbH, Richard Meadows]<br>
Machine Learning is changing - is Rust the right tool for the job?, RustLab 2019, 2019/10/31, Luca Palmieri
* [https://www.youtube.com/watch?v=D1NAREuicNs Writing the Fastest GBDT Library in Rust, 2021/09/16, RustConf 2021, Isabella Tromba]<br>
Using TensorFlow in Embedded Rust, 2020/09/29, Ferrous Systems GmbH, Richard Meadows
Writing the Fastest GBDT Library in Rust, 2021/09/16, RustConf 2021, Isabella Tromba


==Подкасты==
==Подкасты==
DATA SCIENCE AT HOMERust and machine learning #1 (Ep. 107) Rust and machine learning #2 with Luca Palmieri (Ep. 108) Rust and machine learning #3 with Alec Mocatta (Ep. 109) Rust and machine learning #4: practical tools (Ep. 110) Machine Learning in Rust: Amadeus with Alec Mocatta (Ep. 127) Rust and deep learning with Daniel McKenna (Ep. 135) Is Rust flexible enough for a flexible data model? (Ep. 137) Pandas vs Rust (Ep. 144) Apache Arrow, Ballista and Big Data in Rust with Andy Grove (Ep. 145) Polars: the fastest dataframe crate in Rust (Ep. 146) Apache Arrow, Ballista and Big Data in Rust with Andy Grove RB (Ep. 160)
DATA SCIENCE AT HOME:
* [https://datascienceathome.com/rust-and-machine-learning-1-ep-107/ Rust and machine learning #1 (Ep. 107)]<br>
* [https://datascienceathome.com/rust-and-machine-learning-2-with-luca-palmieri-ep-108/ Rust and machine learning #2 with Luca Palmieri (Ep. 108)]<br>
* [https://datascienceathome.com/rust-and-machine-learning-3-with-alec-mocatta-ep-109/ Rust and machine learning #3 with Alec Mocatta (Ep. 109)]<br>
* [https://datascienceathome.com/rust-and-machine-learning-4-practical-tools-ep-110/ Rust and machine learning #4: practical tools (Ep. 110)]<br>
* [https://datascienceathome.com/machine-learning-in-rust-amadeus-with-alec-mocatta-rb-ep-127/  Machine Learning in Rust: Amadeus with Alec Mocatta (Ep. 127)]<br>
* [https://datascienceathome.com/rust-and-deep-learning/ Rust and deep learning with Daniel McKenna (Ep. 135)]<br>
* [https://datascienceathome.com/is-rust-flexible-enough-for-a-flexible-data-model-ep-137/ Is Rust flexible enough for a flexible data model? (Ep. 137)]<br>
* [https://datascienceathome.com/pandas-vs-rust-ep-144/ Pandas vs Rust (Ep. 144)]<br>
* [https://datascienceathome.com/apache-arrow-ballista-and-big-data-in-rust-with-andy-grove-ep-145/ Apache Arrow, Ballista and Big Data in Rust with Andy Grove (Ep. 145)]<br>
* [https://datascienceathome.com/polars-the-fastest-dataframe-crate-in-rust-ep-146/ Polars: the fastest dataframe crate in Rust (Ep. 146)]<br>
* [https://datascienceathome.com/apache-arrow-ballista-and-big-data-in-rust-with-andy-grove-rb-ep-160/ Apache Arrow, Ballista and Big Data in Rust with Andy Grove RB (Ep. 160)]<br>


==ИСТОЧНИКИ==
==ИСТОЧНИКИ==
* [https://dzen.ru/a/YnY7nBxvdEJtsFTu Огромный респект Автору]
* [https://dzen.ru/a/YnY7nBxvdEJtsFTu Огромный респект Автору]

Текущая версия от 19:34, 23 мая 2023

ВВЕДЕНИЕ

Эта статья содержит список библиотек машинного обучения, написанных на Rust.
Представляет собой сборник репозитариев GitHub, блогов, книг, уроков, форумов, статей.
Статья разбита на несколько основных категорий библиотек и алгоритмов. В статье нет библиотек,
которые больше не поддерживаются, а так же почти нет небольших библиотек, которые давно не обновлялись.

ЛИНЕЙНАЯ АЛГЕБРА

  • Большинство пакетов в списке используют ndarray или std::vec.

ИНСТРУМЕНТЫ ПОДДЕРЖКИ

  • Jupyter Notebook
  • evcxr может обрабатывать как Jupyter Kernel или REPL.

Эти библиотеки нужны для обучения алгоритмов и проверки гипотез машинного обучения.

РАБОТА С ВИЗУАЛИЗАЦИЕЙ

  • Список полезных ресурсов для визуализации данных.


  • ASCII line graph:


  • Примеры:


  • Дата-фреймы:

ОБРАБОТКА ИЗОБРАЖЕНИЙ

  • Для обработка изображений вам стоит попробовать библиотеку image-rs.

Здесь приведены такие алгоритмы, как линейные преобразования, подобное есть и в других библиотеках.

ОБРАБОТКА ЕСТЕСТВЕННОГО ЯЗЫКА ИЛИ ПРЕДВАРИТЕЛЬНАЯ ОБРАБОТКА

ГРАФЫ

AutoML

РАБОЧИЕ ПОТОКИ

ВЫЧИСЛЕНИЯ НА GPU С ПОМОЩЬЮ RUST

SKLEARN И ПОДОБНЫЕ БИБЛИОТЕКИ

  • Библиотеки поддерживают следующие алгоритмы:
Linear Regression
Logistic Regression
K-Means Clustering
Neural Networks
Gaussian Process Regression
Support Vector Machines
kGaussian Mixture Models
Naive Bayes Classifiers
DBSCAN
k-Nearest Neighbor Classifiers
Principal Component Analysis
Decision Tree
Support Vector Machines
Naive Bayes
Elastic Net

СТАТИСТИКА

ГРАДИЕНТНЫЙ БУСТИНГ(Gradient Boosting)

НЕЙРОННЫЕ СЕТИ

  • Tensorflow и PyTorch являются наиболее распространенными библиотеками для построения нейронных сетей.

ГРАФОВЫЕ МОДЕЛИ

НЕЙРОЛИНГВИСТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ

РЕКОМЕНДАТЕЛЬНЫЕ СИСТЕМЫ

РАБОТА С ТЕКСТОМ

АЛГОРИТМЫ ПОИСКА БЛИЖАЙШИХ СОСЕДЕЙ

ОБУЧЕНИЕ С ПОДКРЕПЛЕНИЕМ

ОБУЧЕНИЕ С УЧИТЕЛЕМ

ОБУЧЕНИЕ БЕЗ УЧИТЕЛЯ

СТАТИСТИЧЕСКИЕ МОДЕЛИ

ЭВОЛЮЦИОННЫЕ АЛГОРИТМЫ

ДРУГИЕ ПРОЕКТЫ

БЛОГИ

ОБУЧЕНИЕ

ПРИКЛАДНЫЕ РЕСУРСЫ

ФОРУМЫ

КНИГИ

-- 2019/12/10, Joydeep BhattacharjeeWrite machine learning algorithms in Rust
- Use Rust libraries for different tasks in machine learning
- Create concise Rust packages for your machine learning applications
- Implement NLP and computer vision in Rust
- Deploy your code in the cloud and on bare metal servers

--

-- 2021/9/3, Shahin RostamiPlotting with Plotters and Plotly
- Operations with ndarray
- Descriptive Statistics
- Interactive Diagram
- Visualisation of Co-occurring Types
- download source code and dataset

ВИДЕО УРОКИ

Подкасты

DATA SCIENCE AT HOME:

ИСТОЧНИКИ